Introduction to QIIME on the IPython Notebook

Daniel McDonald-(mcdonadt)

Yoshiki Vázquez-Baeza-(@yosmark)

DO NOT START THE EC2 INSTANCES ... WE WILL DO THIS IN A DIFFERENT WAY TODAY!!!!

A microbe dominated world

The universal nature of biochemistry. Pace NR. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):805-8.

A microbe dominated world

Lozupone and Knight PNAS. 2007 Jul 3;104(27):11436-40

A microbe dominated world

Ley et al Nat Rev Microbiol. Oct 2008; 6(10): 776–788

SEQUENCING COST

Image credit: Yoshiki Vazquez Baeza and Jorge Cañardo (Github: @ElDeveloper, @Jorge-C)

...an explosion of -omics

Human

10 trillion human cells 20,000 human genes

Microbiota

100 trillion microbial cells

Microbiota

100 trillion microbial cells

Microbiota

100 trillion microbial cells

Microbiome

3,000,000 microbial genes

How do we assay this diversity?

You're probably not doing metagenomics

16 Replies

Just to begin, I'd like to say that I'm right about this, and if you think I am wrong, I'm not – you are.

Forensic identification using skin bacterial communities

Noah Fierer^{a,b,1}, Christian L. Lauber^b, Nick Zhou^b, Daniel McDonald^c, Elizabeth K. Costello^c, and Rob Knight^{c,d}

^aDepartment of Ecology and Evolutionary Biology, ^bCooperative Institute for Research in Environmental Sciences, and ^cDepartment of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309; and ^dHoward Hughes Medical Institute

Edited by Jeffrey I. Gordon, Washington University School of Medicine, St. Louis, MO, and approved February 13, 2010 (received for review January 05, 2010)

Recent work has demonstrated that the diversity of skin-associated bacterial communities is far higher than previously recognized, with a high degree of interindividual variability in the composition of bacterial communities. Given that skin bacterial communities are personalized, we hypothesized that we could use the residual skin bacteria left on objects for forensis identification, matching the

studies that combine recent developments in phylogenetic community analyses (10) with high-throughput pyrosequencing methods (11). First, we compared bacterial communities on individual keys of three computer keyboards to the communities found on the fingers of the keyboard owners. Second, we examined the similarity between

ARTICLE

Human gut microbiome viewed across age and geography

Tanya Yatsunenko¹, Federico E. Rey¹, Mark J. Manary^{2,3}, Indi Trehan^{2,4}, Maria Gloria Dominguez-Bello⁵, Monica Contreras⁶, Magda Magris⁷, Glida Hidalgo⁷, Robert N. Baldassano⁸, Andrey P. Anokhin⁹, Andrew C. Heath⁹, Barbara Warner², Jens Reeder¹⁰, Justin Kuczynski¹⁰, J. Gregory Caporaso¹¹, Catherine A. Lozupone¹⁰, Christian Lauber¹⁰, Jose Carlos Clemente¹⁰, Dan Knights¹⁰, Rob Knight^{10,12} & Jeffrey I. Gordon¹

Yatsunenko et al. Nature. 2012 May 9;486(7402):222-7

Yatsunenko et al. Nature. 2012 May 9;486(7402):222-7

Yatsunenko et al. Nature. 2012 May 9;486(7402):222-7

Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor

Michelle I. Smith et al. Science **339**, 548 (2013); DOI: 10.1126/science.1229000

Smith et al. Science. 2013 Feb 1;339(6119):548-54

Succession of microbial consortia in the developing infant gut microbiome

Jeremy E. Koenig^a, Aymé Spor^a, Nicholas Scalfone^a, Ashwana D. Fricker^a, Jesse Stombaugh^b, Rob Knight^{b,c}, Largus T. Angenent^d, and Ruth E. Ley^{a,1}

^aDepartment of Microbiology, Cornell University, Ithaca, NY 14853; ^bDepartment of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309; ^cHoward Hughes Medical Institute, University of Colorado, Boulder, CO 80309; and ^dDepartment of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850

Edited by Todd R. Klaenhammer, North Carolina State University, Raleigh, NC, and approved June 24, 2010 (received for review March 2, 2010)

The colonization process of the infant gut microbiome has been called chaotic, but this view could reflect insufficient documentation of the factors affecting the microbiome. We performed a 2.5-y case study of the assembly of the human infant gut microbiome, to relate

To investigate how life events impact the developing infant gut microbiome, we performed a case study to monitor the gut microbial composition of one infant over a period of 2.5 y. We analyzed a set of more than 60 fecal samples collected concur-

Koeing et al. Proc Natl Acad Sci U S A. 2011 Mar 15;108

Video fun time!

By RYAN JASLOW / CBS NEWS / January 17, 2013, 11:06 AM

Fecal transplants beat antibiotics for curing diarrhea caused by C. difficile

By RYAN JASLOW / CBS NEWS / January 17, 2013, 11:06 AM

Fecal transplants beat antibiotics for curing diarrhea caused by C.

difficile

Video fun time!

Are there enterotypes in the HMP data?

No support for enterotypes in the HMP + community data...

Koren et al. PLoS Com Biol 2013;9(1)

-Koren et al. in revision PLoS Comp Bio-

Slide adapted with permission from Rob Knight

...clustering weak, gradients explain better (ditto other sites)

So let's re-examine the original evidence for enterotypes

Koren et al. PLoS Com Biol 2013;9(1)

Koren et al. in revision PLoS Comp Bio

Slide adapted with permission from Rob Knight

Koren et al. PLoS Com Biol 2013;9(1)

Koren et al. in revision PLoS Comp Bio

Koren et al. PLoS Com Biol 2013;9(1)

Koren et al. in revision PLoS Comp Bio

Koren et al. PLoS Com Biol 2013;9(1)

Koren et al. in revision PLoS Comp Bio

Koren et al. PLoS Com Biol 2013;9(1)

-Koren et al. in revision PLoS Comp Bio-

Gilbert et al. BMC Biol. 2014 Aug 22;12(1):69

american final fin final final final final final final final fin final fin fin

- HMP: Human Microbiome Project (2012, Nature 486: 202-214)
- GG: Global Gut (2012, Nature 486: 222-228)
- PGP: Personal Genome Project (unpublished)
- AGP: American Gut Project (unpublished)

Flagstaff begins to look different, but "returns" to the other cities.

There doesn't appear to be a city-specific composition effect.

- San Diego
- Flagstaff
- Toronto

Toward Effective Probiotics for Autism and Other Neurodevelopmental Disorders

Jack A. Gilbert, 1,2 Rosa Krajmalnik-Brown, 3,4 Dorota L. Porazinska, 5 Sophie J. Weiss, 5 and Rob Knight 5,6,*

Autism spectrum cohort of the American Gut

- 269 families to receive samples
- Conjunction with ASD-clinicians
- Donations for ASD-affected and neurotypical siblings covered by Jack Gilbert

Gut Check: Exploring your Microbiome

Imagine if there were an organ in your body that weighed as much as your brain, that affected your health, your weight, and even your behavior. Wouldn't you want to know more about it? There is such an organ — the collection of microbes in and on your body, your human microbiome.

"Galileo saw outer space through his telescope, and we want to see the inner space of your gut through modern genetics" -Rob Dunn

OPEN DATA

Analyses are executable, reproducible, and BSD-licensed

IPython nbviewer FAQ This Notebook assumes the following dependencies are in your environment: • BIOM == 2.0.1 matplotlib >= 1.1.0 In [1]: %matplotlib inline In [2]: import matplotlib.pyplot as plt import numpy as np In [4]: from biom import load table from biom.parse import MetadataMap from collections import Counter !curl -OL https://github.com/biocore/American-Gut/raw/master/data/AG/ AG 100nt even10k.txt !curl -OL https://github.com/biocore/American-Gut/raw/master/data/AG/ AG 100nt even10k.biom.gz metadata = MetadataMap.from file('AG 100nt even10k.txt') table = load table('AG 100nt even10k.biom.gz') table.add metadata(metadata)

The first function that we're going to define will compute the percentage of shared OTI Is over

Adapted from http://redefininghuman.com
Please see http://redefininghuman.com

Running QIIME

- Native installation on Mac OS X or Linux
 - From laptops to compute clusters with thousands of cores
 - qiime-deploy
- Ubuntu Virtual Box
- Cloud-based installations

Genome Biol. 2011; 12(5): R50. PMCID: PMC3271711

Published online 2011 May 30. doi: 10.1186/gb-2011-12-5-r50

Moving pictures of the human microbiome

J Gregory Caporaso,¹ Christian L Lauber,² Elizabeth K Costello,³ Donna Berg-Lyons,²
Antonio Gonzalez,⁴ Jesse Stombaugh,¹ Dan Knights,⁴ Pawel Gajer,⁵ Jacques Ravel,⁵ Noah
Fierer,^{2,6} Jeffrey I Gordon,⁷ and Rob Knight^{⊠1,8}

Moving Pictures of the Human Microbiome

- Two subjects sampled daily, one for six months, one for 18 months
- Four body sites: tongue, palm of left hand, palm of right hand, and gut (via fecal swabs).

Moving Pictures of the Human Microbiome

- Investigate the relative temporal variability of body sites.
- Is there a temporal core microbiome?

Moving Pictures of the Human Microbiome: QIIME tutorial

- A **small** subset of the full data set to facilitate short run time: ~0.1% of the full sequence collection.
- Sequenced across six Illumina GAIIx lanes, with a subset of the samples also sequenced on 454.

Figure 1, http://www.ncbi.nlm.nih.gov/pubmed/21624126

Metcalf, Jessica (2014): Overview of data generation, processing and analysis using QIIME. figshare. http://dx.doi.org/10.6084/m9.figshare.902219

Tutorial

1) Go to the URL of your table:

http://tinyurl.com/tableXXXX-notebook

Password: qiime2014~

http://tinyurl.com/table1-notebook http://tinyurl.com/table2-notebook http://tinyurl.com/table3-notebook http://tinyurl.com/table4-notebook http://tinyurl.com/table5-notebook http://tinyurl.com/table6-notebook http://tinyurl.com/table7-notebook http://tinyurl.com/table8-notebook http://tinyurl.com/table9-notebook http://tinyurl.com/table10-notebook

Replace the XXXX with the number of your table

Tutorial

2) Click on the notebook named tutorial_master.

Tutorial

3) File>Make a Copy

Tutorial

3) Rename to your name

QIIME Tutorial with the IPython Notebook

We have deployed four AWS (Amazon Web Services) EC2 (Elastic Compute Cloud) instances for the purpose of this tutorial. If you are reading this, you will have connected to one of these instances through your laptop's browser. The commands you issue will be executed by the instance you are connected to, and all computation and visualization will be done through the browser. You will not be downloading any files to your local machine for this tutotial.

We utilize the IPython notebook for our tutorial because it is significantly easier for people who are unfamiliar with QIIME or the command line to use. When you have installed QIIME on your local machine or cluster, you will not need to use IPython to interact with it (and most people do not), although you are welcome to do so, and the full functionality is available. For more information on using QIIME with IPython, see <u>our recent paper</u>. You can find more information on the IPython Notebook <u>here</u>, and the noviewer tool (which we use to display the notebook) here.

Notes/tips for using IPython

IPython acts like a hybrid python/bash environment. Commands prefixed by a '!' character are issued to the shell (bash in this case). Commands not prefixed with '!' are issued to the python interpreter, and behave as they normally would in python. Each 'cell' of the notebook (cells with commands in them are surrounded by grey boxes) is executable. Shift+Enter is the way you execute (or re-execute) the commands in a given cell. You must click in the cell to gain focus in that cell, and then type Shift+Enter or hit the play button above. Hitting Enter alone will just add an additional line. Try executing the command below.

Important: Don't edit the contents of this first cell as it sets up key variables for the multiuser environment.

```
In []: from os import chdir, mkdir, makedirs, path
    from tempfile import mkdtemp

from IPython.display import FileLinks as ipFileLinks, FileLink as ipFileLink

# to support running in a multi-user environment, each user will work in

# a temporary working directory with a randomly generated name
    basedir = "tmp"
    working_dir = mkdtemp(prefix='stamps2014_', dir=basedir)

otu_base = "/home/ubuntu/qiime_software/gg_otus-13_8-release/"
```

IPython acts like a hybrid python/bash environment.

The way we interact with the IPython notebook is through the 'cells'

```
In [ ]: from random import choice
        from os import chdir, mkdir, makedirs
        from os.path import join
        from IPython.display import FileLinks as ipFileLinks, FileLink as ipFileLink
        # to support running in a multi-user environment, each user will work in
        # a temporary working directory with a randomly generated name
        basedir = "temp"
        choices = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
        choices += choices.lower()
        working dir = join(basedir, ''.join([choice(choices) for i in range(10)]))
        reference_seqs = join(otu_base, "rep_set/97_otus.fasta")
        reference_tree = join(otu_base, "trees/97_otus.tree")
        reference tax = join(otu base, "taxonomy/97 otu taxonomy.txt")
        print "Your working directory is %s" % working_dir
        makedirs(working dir)
        chdir(working dir)
        !wget\ https://s3.amazonaws.com/s3-qiime\_tutorial\_files/moving\_pictures\_tutorial-1.7.0.tgz
        !tar -xzf moving_pictures_tutorial-1.7.0.tgz
        # To use FileLink(s), but link to files in the user's working directory
        # we wrap the call to FileLink(s) to append the working_dir to the
        # url_prefix. NOTE: This is not something that you'll generally need to
        # do - it's only important as we're working with multiple users in the
        # IPython Notebook, which is currently only a single-user environment.
        def FileLinks(path):
            return ipFileLinks(path,url_prefix='files/%s/' % working_dir)
            return ipFileLink(path,url_prefix='files/%s/' % working_dir)
```

To view output files, you will use the commands FileLink and FileLinks. Calling FileLink(some_file.txt') produces a standard html-like link to that file which you can click on. Clicking on the link will bring up a new browser tab with the contents of 'some_file.txt' displayed. Just to practice, try executing the commands in the following cell. You should an output of a blue html-link. Click this link.

```
In [ ]: lecho 'A test txt file.' > ./practice_filelink.txt
FileLink('practice_filelink.txt')
```

IPython acts like a hybrid python/bash environment.

The way we interact with the IPython notebook is through the 'cells'

```
from os import chdir, mkdir, makedirs
from os.path import join
from IPython.display import FileLinks as ipFileLinks, FileLink as ipFileLink
# to support running in a multi-user environment, each user will work in
# a temporary working directory with a randomly generated name
basedir = "temp"
choices = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
choices += choices.lower()
working_dir = join(basedir,''.join([choice(choices) for i in range(10)]))
reference_seqs = join(otu_base, "rep_set/97_otus.fasta")
reference_tree = join(otu_base, "trees/97_otus.tree")
reference_tax = join(otu_base, "taxonomy/97_otu_taxonomy.txt")
print "Your working directory is %s" % working_dir
makedirs(working dir)
chdir(working dir)
!wget https://s3.amazonaws.com/s3-qiime_tutorial_files/moving_pictures_tutorial-1.7.0.tgz
!tar -xzf moving_pictures_tutorial-1.7.0.tgz
# To use FileLink(s), but link to files in the user's working directory
# we wrap the call to FileLink(s) to append the working_dir to the
# url_prefix. NOTE: This is not something that you'll generally need to
# do - it's only important as we're working with multiple users in the
# IPython Notebook, which is currently only a single-user environment.
def FileLinks(path):
   return ipFileLinks(path,url_prefix='files/%s/' % working_dir)
   return ipFileLink(path,url_prefix='files/%s/' % working_dir)
```

To view output files, you will use the commands FileLink and FileLinks, Calling FileLink(some_file.txt') produces a standard html-like link to that file which you can click on. Clicking on the link will bring up a new browser tab with the contents of 'some_file.txt' displayed. Just to practice, try executing the commands in the following cell. You should an output of a blue html-link. Click this link.

```
In [ ]: | lecho 'A test txt file.' > ./practice_filelink.txt | FileLink('practice_filelink.txt')
```

IPython acts like a hybrid python/bash environment.

The way we interact with the IPython notebook is through the 'cells'

```
In [ ]: from random import choice
        from os import chdir, mkdir, makedirs
        from os.path import join
        from IPython.display import FileLinks as ipFileLinks, FileLink as ipFileLink
        # to support running in a multi-user environment, each user will work in
        # a temporary working directory with a randomly generated name
        basedir = "temp"
        choices = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
        choices += choices.lower()
        working dir = join(basedir, ''.join([choice(choices) for i in range(10)]))
        reference_seqs = join(otu_base, "rep_set/97_otus.fasta")
        reference_tree = join(otu_base, "trees/97_otus.tree")
        reference tax = join(otu base, "taxonomy/97 otu taxonomy.txt")
        print "Your working directory is %s" % working_dir
        makedirs(working dir)
        chdir(working dir)
        !wget\ https://s3.amazonaws.com/s3-qiime\_tutorial\_files/moving\_pictures\_tutorial-1.7.0.tgz
        !tar -xzf moving_pictures_tutorial-1.7.0.tgz
        # To use FileLink(s), but link to files in the user's working directory
        # we wrap the call to FileLink(s) to append the working_dir to the
        # url_prefix. NOTE: This is not something that you'll generally need to
        # do - it's only important as we're working with multiple users in the
        # IPython Notebook, which is currently only a single-user environment.
        def FileLinks(path):
            return ipFileLinks(path,url_prefix='files/%s/' % working_dir)
            return ipFileLink(path,url_prefix='files/%s/' % working_dir)
```

To view output files, you will use the commands FileLink and FileLinks. Calling FileLink('some_file.txt') produces a standard html-like link to that file which you can click on. Clicking on the link will bring up a new browser tab with the contents of 'some_file.txt' displayed. Just to practice, try

```
In [ ]: lecho 'A test txt file.' > ./practice_filelink.txt
    FileLink('practice_filelink.txt')
```

Commands prefixed by a '!' character are issued to the shell (just like what your terminal runs).

```
Iwget https://s3.amazonaws.com/s3-qiime_tutorial_files/moving_pictures_tutorial-1.8.0.tgz
-xzf moving_pictures_tutorial-1.8.0.tgz
In [2: |echo 'A test txt file.' > ./practice_filelink.txt
FileLink('practice_filelink.txt')
```

Commands not prefixed with '!' are issued to python, and behave as they normally would in python.

```
In [1]:

from random import choice

from os import chdir, mkdir, makedirs

from os.path import join

from IPython.display import FileLinks as ipFileLinks, FileLink as ipFileLink
```

Each 'cell' of the notebook is executable. Shift+Enter (or the play button) is the way you execute (or re-execute) the commands in a given cell. You must click in the cell to gain focus in that cell, and then type Shift+Enter or hit the play button

Each executable has a prefix that shows you its status (if it has been run, if it hasn't been run, or if its still running)

Hasn't been run

```
In [ ]: |bior summarize-table -i moving_pictures_tutorial-1.8.0/illumina/otus/otu_table_mc2_w_tax_no_pynast_failures.biom -o moving_pictures_tutorial-1.8.0/illumina/otus/otu_table_mc2_w_tax_no_pynast_failures.biom.stats
```

Has been run

```
In [13]: Is lit_libraries_fastq.py -o moving_pictures_tutorial-1.7.0/illumina/slout/ -i moving_pictures_tutorial-1.7.0/illumina/raw/subsampl

In [14]: Fi eLinks('moving_pictures_tutorial-1.7.0/illumina/slout/')

Out[14]: m ving_pictures_tutorial-1.7.0/illumina/slout/
histograms.txt
split library_log.txt
seqs.fna

In [15]: Ic unt_seqs.py -i moving_pictures_tutorial-1.7.0/illumina/slout/seqs.fna

66189 : moving_pictures_tutorial-1.7.0/illumina/slout/seqs.fna (Sequence lengths (mean +/- std): 132.1182 +/- 9.6185)
66189 : Total
```

Still running

```
In [*]: !pck_open_reference_otus.py -o moving_pictures_tutorial-1.7.0/illumina/otus/ -i moving_pictures_tutorial-1.7.0/illumina/slout/seqs
```


Samples to sequences

Relates samples to variables

SampleID	Sex	SampleType	Plotting your doom?
400171222	Male	Poop	Naturally

Mapping file

Mapping file: always run

validate_mapping_file.py

```
000
                                            Fasting Map.txt
      #SampleID BarcodeSequence inkerPrimerSequence
                                                                     DOB Description
                                                         Treatment >
      PC 354 AGCACCAGCCTA
                             YATGCTCCCTCCCGTAGGAGT
                                                      Control 20061218
                                                                         Control mouse_I.D._354-
     PC.355 AACTCGTCGATG
                             YATGCTGCCTCCCGTAGGAGT >
                                                     Control > 20061218 >
                                                                         Control_mouse_I.D._355-
     PC.356 ACAGACCACTCA
                                                                         Control_mouse_I.D._356-
                             YATGCTGCCTCCCGTAGGAGT >
                                                     Control > 20061126 >
     PC.481 ACCAGCGACTAG
                             YATGCTGCCTCCCGTAGGAGT >
                                                     Control 20070314>
                                                                         Control_mouse_I.D._481-
     PC.593 AGCAGCACTTGT
                             YATGCTGCCTCCCGTAGGAGT >
                                                     Control 20071210
                                                                         Control_mouse_I.D._593-
     PC.607 AACTGTGCGTAC
                             YATGCTGCCTCCCGTAGGAGT >
                                                     Fast)
                                                             20071112>
                                                                         Fasting_mouse_I.D._607-
     PC.634 ACAGAGTCGGCT
                             YATGCTGCCTCCCGTAGGAGT>
                                                     Fast⊦
                                                             20080116
                                                                         Fasting_mouse_I.D._634
     PC.635 ACCGCAGAGTCA
                             YATGCTGCCTCCCGTAGGAGT >
                                                     Fast⊁
                                                             20080116
                                                                         Fasting_mouse_I.D._635-
 10
     PC.636 ACGGTGAGTGTC
                                                             20080116>
                                                                         Fasting_mouse_I.D._636-
                             YATGCTGCCTCCCGTAGGAGT>
                                                     Fast⊦
 11
      8 Column: 33 Rest
                                        ‡ 💮 ▼ Tab Size: 4 💠 —
Line:
```


Check for errors

- Work through the "Check our mapping file for errors" section, and execute the command
- Try validating the "bad" mapping file

Missing mapping file

From: XXXX@gmail.com

To: jose.clemente@gmail.com

Subject: mapping file

Hi,

I am doing microbial analysis with QIIME. I got the SFF files back from the sequencing center, but I lost the mapping file. Can you help me please?

Thanks, XXXX

Missing mapping file

From: XXXX@gmail.com

To: jose.clemente@gmail.com

Subject: mapping file

Hi,
I am doing microbial a ysis th QIIN I got to SFF files back from the sequencing center, but I lost the many ping and Can at help a please?

Thanks,

XXXX

Missing mapping file

HT to Dr. Clemente for sharing this e-mail

Split libraries

Multiplex Thousands of Samples with Error-Correcting Barcodes

- Perform quality filtering
- Demultiplex sequences

- >GCACCTGAGGACAGGCATGAGGAA...
- >GCACCTGAGGACAGGGGGGGGGA...
- >TCACATGAACCTAGGCAGGACGAA...
- >CTACCGGAGGACAGGCATGAGGAT...
- >TCACATGAACCTAGGCAGGAGGAA...
- >GCACCTGAGGACACGCAGGACGAC...
- >CTACCGGAGGACAGGCAGGAGGAA...
- >CTACCGGAGGACACACAGGAGGAA... >GAACCTTCACATAGGCAGGAGGAT...
- >TCACATGAACCTAGGGGCAAGGAA...
- >GCACCTGAGGACAGGCAGGAGGAA...
- >GAACCTTCACATAGGCAGGAGGAT...

Assign Sequences to Samples

Demultiplex your data

 Read through and execute the "Demultiplexing and quality filtering sequences" section

Sequences to OTUs and Phylogeny

And coming soon: SortMeRNA

Pick OTUs

- Execute the cell that begins with:
 - !pick_open_reference_otus.py -o mov...

Closed reference OTU picking

Open reference OTU picking

- De novo
 - Single study
 - Poor characterization of existing taxa
 - Good characterization of novel taxa
- Closed-reference
 - Combine studies
 - Good characterization of existing taxa
 - Poor characterization of novel taxa
- Open-reference (QIIME default)
 - Single study
 - Good characterization of existing taxa
 - Good characterization of novel taxa

Pick open reference OTUs

- Workflow script, performs all steps through building an OTU table
 - Determine the OTU clusters
 - Pick the representative sequence for each OTU cluster
 - Align the sequences to a template or other reference alignment
 - Assign taxonomy if performing a de novo OTU picking
 - Remove non-phylogenetically informative positions
 - Construct a phylogeny from an alignment
 - Constructs the actual OTU table object

Pick OTUs

- Read through the rest of the text in the "OTU Picking..." section
- Once the "pick_open_reference_otus.py" cell has completed, execute the remaining cells in the section
- Read through and execute the "Create a single mapping file..." section

(classic format)

sample x OTU matrix

```
000
                                                              seqs_otu_table.txt
      #Full OTU Counts
                                                       PC.607> PC.634> PC.635> PC.636> Consensus Lineage-
                                                       Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
                                                       Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
                                                       Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales-
      wf_otu_100>
                                                       Root:Bacteria-
                                                       Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
                                                       Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; "Lachnospiraceae"-
                                                       Root:Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
                                                       Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales-
                                                       Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
 12
                                                       Root;Bacteria;Firmicutes;"Clostridia";Clostridiales-
                                                       Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
                                                       Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;Incertae Sedis XIII;Anaerovorax-
 15
                                                       Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Rikenellaceae;Alistipes-
                                                       Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides
 17
      wf_otu_110 >
                                                       Root;Bacteria;Actinobacteria;Actinobacteria;Coriobacteridae;Coriobacteriales;Coriobact
                                                       Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides-
 19
                                                       Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides-
 20
                                                       Root;Bacteria-
      wf_otu_113 > 0 >
                                                                                                                                          ) 4 b
                                        ‡ 💮 ▼ Tab Size: 4 💠 —
      1 Column: 1 Rest
```

(classic format)

sample x OTU matrix

```
seqs_otu_table.txt
#Full OTU Counts
                                         PC.593> PC.607> PC.634> PC.635> PC.636> Consensus Lineage-
wf_otu_0>
                                                  Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"
wf_otu_1>
                                                  Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; "Lachnospiraceae"
wf_otu_10>
                                                  Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales-
wf_otu_100
                                                  Root:Bacteria-
wf_otu_101
                                                  Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; "Lachnospiraceae"-
wf_otu_102
                                                  Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; "Lachnospiraceae"-
wf_otu_103
                                                  Root:Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
                                                  Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales-
wf_otu_105
                                                  Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; "Lachnospiraceae"
wf_otu_106>
                                                  Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales-
                                                  Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; "Lachnospiraceae"-
                                                  Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; Incertae Sedis XIII; Anaerovorax-
                                                  Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Rikenellaceae;Alistipes-
                                                  Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides
wf_otu_110>
                                                  Root;Bacteria;Actinobacteria;Actinobacteria;Coriobacteridae;Coriobacteriales;Coriobact
                                                  Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides-
                                                  Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides
wf_otu 113 > 0 >
                                                  Root;Bacteria-
1 Column: 1 B Rest
                                   ‡ 💮 ▼ Tab Size: 4 🛊 -
```

OTU identifiers

(classic format)

sample x OTU matrix

```
000
                                                              seqs_otu_table.txt
       #Full
                                       PC.481 PC.593 PC.607 PC.634 PC.635 PC.636 Consensus Lineage-
                                                                                     🚅ridia";Clostridiales;"Lachnospiraceae"–
                                                        Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
       wf_otu_10
                                                        Root;Bacteria;Firmicutes;"Clostridia";Clostridiales-
       wf_otu_100
                                                        Root;Bacteria-
                                                        Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
       wf_otu_101
       wf_otu_102
                                                        Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
       wf_otu_103>
                                                        Root:Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
       wf_otu_104>
                                                        Root;Bacteria;Firmicutes;"Clostridia";Clostridiales-
       wf_otu_105 >
                                                        Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
  12
       wf_otu_106>
                                                        Root;Bacteria;Firmicutes;"Clostridia";Clostridiales-
       wf_otu_107>
                                                        Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
  13
                                                        Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;Incertae Sedis XIII;Anaerovorax-
       wf_otu_108 >
  15
       wf_otu_109>
                                                       Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Rikenellaceae;Alistipes-
                                                        Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides
  17
       wf_otu_110 > 0
                                                        Root;Bacteria;Actinobacteria;Actinobacteria;Coriobacteridae;Coriobacteriales;Coriobact
       wf_otu_111 > 0
                                                        Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides-
  19
       wf_otu_112 № 0
                                                        Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides-
  20
       wf_otu_113> 0>
                                                        Root;Bacteria-
                                                                                                                                         ) 4 b
      1 Column: 1  Res
Line:
                                        ‡ 💮 ▼ Tab Size: 4 ‡ -
```

Sample identifiers

(classic format)

sample x OTU matrix

```
seqs_otu_table.txt
    #Full OTU Counts
                                                      PC.607 PC.634 PC.635 PC.636 Consensus Lineage
                                                      Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; "Lachnospiraceae"-
                                                      Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"
                                                      Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales-
                                                      Root;Bacteria-
                                                      Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; "Lachnospiraceae"
                                                      Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; "Lachnospiraceae"-
                                                       Root:Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
                                                      Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales-
                                                       Root;Bacteria;Firmicutes;"Clostridia";Clostridiales;"Lachnospiraceae"-
                                                      Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales-
                                                      Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; "Lachnospiraceae"-
                                                      Root; Bacteria; Firmicutes; "Clostridia"; Clostridiales; Incertae Sedis XIII; Anaerovorax-
                                                      Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Rikenellaceae;Alistipes-
                                                       Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides
17
                                                      Root;Bacteria;Actinobacteria;Actinobacteria;Coriobacteridae;Coriobacteriales;Coriobact
                                                      Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides-
                                                       Root;Bacteria;Bacteroidetes;Bacteroidetes;Bacteroidales;Bacteroidaceae;Bacteroides-
20
                                                      Root;Bacteria-
    wf_otu_113 > 0 >
    1 Column: 1 B Rest
                                       ‡ 💮 ▼ Tab Size: 4 →
```

Optional per OTU taxonomic information

- http://biom-format.org
- Genomic Standards Consortium standard format

VAMPS

The Visualization and Analysis of Microbial Population Structures

The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. McDonald, Clemente, et al. Gigascience 2012 1:7

sample x observation contingency matrix

sample x observation contingency matrix

sample x observation contingency matrix

http://biom-format.org/

Tab
Delimited
Files

{JSON}

HDF5

- Blazing fast!
- Space efficient.
- Widely used in scientific fields

HDF5

Blazing fast!

• Space efficient.

Widely used in scientific fields


```
Num samples: 61
Num observations: 1967
Total count: 63297
Table density (fraction of non-zero values): 0.085
Table md5 (unzipped): 1c3a266d1fa3722d9297af989494d30f
Counts/sample summary:
Min: 126.0
Max: 2560.0
Median: 885.000
Mean: 1037.656
Std. dev.: 757.733
Sample Metadata Categories: None provided
Observation Metadata Categories: taxonomy
Counts/sample detail:
L3S237: 126.0
L3S235: 169.0
L3S372: 187.0
L3S373: 225.0
L3S368: 238.0
L3S367: 238.0
L3S370: 246.0
```

Fingerprint

```
Num samples: 61
Num observations: 1967
Total count: 63297
Table density (fraction of non-zero values): 0.085
Table md5 (unzipped): 1c3a266d1fa3722d9297af989494d30f
Counts/sample summary:
Min: 126.0
Max: 2560.0
Median: 885.000
Mean: 1037.656
Std. dev.: 757.733
Sample Metadata Categories: None provided
Observation Metadata Categories: taxonomy
Counts/sample detail:
L3S237: 126.0
L3S235: 169.0
L3S372: 187.0
L3S373: 225.0
L3S368: 238.0
L3S367: 238.0
L3S370: 246.0
```

```
Num samples: 61
Num observations: 1967
Total count: 63297
Table density (fraction of non-zero values): 0.085
Table md5 (unzipped): 1c3a266d1fa3722d9297af989494d30f
Counts/sample summary:
Min: 126.0
Max: 2560.0
Median: 885.000
                                                           Statistics
Mean: 1037.656
Std. dev.: 757.733
Sample Metadata Categories: None provided
Observation Metadata Categories: taxonomy
Counts/sample detail:
L3S237: 126.0
L3S235: 169.0
L3S372: 187.0
L3S373: 225.0
L3S368: 238.0
L3S367: 238.0
L3S370: 246.0
```

```
Num samples: 61
Num observations: 1967
Total count: 63297
Table density (fraction of non-zero values): 0.085
Table md5 (unzipped): 1c3a266d1fa3722d9297af989494d30f
Counts/sample summary:
Min: 126.0
Max: 2560.0
Median: 885.000
Mean: 1037.656
Std. dev.: 757.733
Sample Metadata Categories: None provided
Observation Metadata Categories: taxonomy
Counts/sample detail:
L3S237: 126.0
L3S235: 169.0
L3S372: 187.0
                                     Breakdown per sample
L3S373: 225.0
L3S368: 238.0
L3S367: 238.0
L3S370: 246.0
```

Computing alpha and beta diversity

Alpha and beta diversity

- Alpha is within a sample
 - E.g., how many species are in a sample
- Beta is between samples
 - E.g., how similar are two samples
- Lots of ways to calculate these

Alpha diversity = 3

Alpha diversity = 4

Sample B is more diverse than sample A

Alpha diversity = 3 Total sequences = 4

Alpha diversity = 4 Total sequences = 8

Sample A

$$PD = 0.13 + 0.03 + 0.11 + 0.08 = 0.35$$

Sample B

Pseudomonas aeruginosa Pseudomonas argentinensis Escherichia coli

PD = 0.15 + 0.03 + 0.25 + 0.06 + 0.04 + 0.12 + 0.15 + 0.01 + 0.03 + 0.11 = 0.95

Phylogenetic Diversity (PD)

Sample A

Pseudomonas aeruginosa Pseudomonas argentinensis Pseudomonas flavescens

PD = 0.35

Sample B

Pseudomonas aeruginosa Pseudomonas argentinensis Escherichia coli

PD = 0.40

Sample C

Pseudomonas aeruginosa Giardia lamblia Methanobrevibacter smithii

PD = 0.95

Phylogenetic Diversity (PD)

Sample A

Pseudomonas aeruginosa Pseudomonas argentinensis Pseudomonas flavescens

Sample B

Pseudomonas aeruginosa Pseudomonas argentinensis Escherichia coli

Sample C

Pseudomonas aeruginosa Giardia lamblia Methanobrevibacter smithii

$$PD = 0.35$$
 < $PD = 0.40$ < $PD = 0.95$

Conclusion:

Sample C is more diverse than sample B, which is more diverse than sample A.

Alpha diversity = 3 Total sequences = 4

Alpha diversity = 4 Total sequences = 8

Randomly select 4 sequences from B

Alpha diversity = 3 Total sequences = 4

Alpha diversity = 4 Total sequences = 8

Rarefy to 4 sequences

Sample A is more diverse than sample B

A x B = 2 A x C = 2 B x C = 1

Unweighted UniFrac: a qualitative, phylogenetic β-diversity metric

Percent of observed branch length that is unique to either sample

Clustering by UniFrac distance

In the ancient times of ... 2012

• We used KiNG to view 3D plots in QIIME.

It's 2014!

Vázquez-Baeza et al. GigaScience 2013, 2:16 http://www.gigasciencejournal.com/content/2/1/16

TECHNICAL NOTE

Open Access

EMPeror: a tool for visualizing high-throughput microbial community data

Yoshiki Vázguez-Baeza¹, Meg Pirrung², Antonio Gonzalez³ and Rob Knight^{3,4,5*}

Visualizing ordination plots (3D)

Visualizing ordination plots (10D)

Parallel Plots

Overview

- Integrates with QIIME and it's workflows
- Use case-driven
- Deals well with rich metadata
- Lightweight

http://www.khronos.org/webgl/

http://www.oracle.com/

Output File Size Comparison

EMPEROR

Reproducible Science

Online Resources

http://emperor.colorado.edu

- Request a feature:
 - www.github.com/biocore/emperor

- Or contact the QIIME Forum
 - http://groups.google.com/group/qiime-forum

Differential feature abundance

Which features (OTUs) of your data are most different between sample classes?

	Sample_1	Sample_2	Sample_3	Sample_4	Sample_5	Sample_6
ОТU_1	100	150	1000	250	275	600
OTU_2	345	297	611	35	14	0

Differential feature abundance

 Huge body of literature and statistical techniques available. Choose wisely.

- Not a substitute for:
 - A trained statistician
 - Proper experimental design
 - Mechanistic understanding

Differential feature abundance

- New techniques are emerging in microbial ecology (they've been used in other fields for a while elsewhere)
 - "Waste Not Want Not" McMurdie and Holmes2014
- QIIME 1.9 (next release) will contain some new methods.

Supervised learning

- Subset of machine learning.
- We 'supervise' the algorithms learning. It learns from training data and applies what it learned to test data.
- Training data and test data both come from your dataset - you aren't taking new samples or using someone else's data.

Supervised learning

- Cross-validation prevents overfitting.
- Overfitting is 'over-learning' your data learning its idiosyncrasies rather than it's underlying pattern.

"Supervised Classification of Human Microbiota" Knights et al. 2011 Andrew Ng's Coursera Course on Machine Learning "Elements of Statistical Learning" Hastie, Tibshirani, Friedman scikit-learn: http://scikit-learn.org/stable/

That is all ... for now

http://github.com/biocore/qiime

http://octodex.github.com/front-end-conftocat/

Modified from

http://bio.sacnas.org/uploads/Judges/we_need_you.jpg

Qiime Forum

Search the forum

http://forum.qiime.org

We try to answer within 24 hours

QIIME Forum

Members 1000

Description Public forum for help with the QIIME (Quantitative Insights Into Microbial Ecology) Toolkit. See http://giime.org for more details.

Public website http://giime.org

<u>edit</u>

Language edit

Categories Science and Technology >Biology

Computers >Software

Access Anybody can view group content

Only managers can view group members list

People can request an invitation to join

Only members can post

Group email qiime-forum@googlegroups.com

Feeds Latest 15 messages (RSS) - View all available feeds (RSS and Atom)

Archive												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010							4	119	107	<u>145</u>	83	141
2011	122	240	<u>261</u>	204	155	<u>239</u>	<u>310</u>	342	295	220	323	446
2012	427	482	306	343	628	<u>578</u>	<u>429</u>	<u>710</u>	713	<u>488</u>	<u>758</u>	487
2013	<u>761</u>	928	<u>754</u>	<u>340</u>								

QIME allows analysis of high-throughput community sequencing data

JG Caporaso, J Kuczynski, J Stombaugh, K Bittinger... - Nature ..., 2010 - nature.com To the Editor: High-throughput sequencing is revolutionizing microbial ecology studies. Efforts like the Human Microbiome Projects 1 and the US National Ecological Observatory Network 2 are helping us to understand the role of microbial diversity in habitats within our ...

Cited by 1005 Related articles All 7 versions Cite Save

Visits 2.000

July 2012

Acknowledgments

- Rob Knight
- Antonio Gonzalez
- Adam Robbins-Pianka
- Will Van Treuren
- Luke Ursell
- Jose Clemente
- Daniel McDonald
- Greg Caporaso
- Jackson Chen
- Nicholas Bokulich
- The Knight Laboratory
- Team of QIIME Developers
- These slides have been adapted from multiple sets of slides.

Testing

```
yoshikivazquezbaeza:qiime@HEAD$ cloc qiime scripts
     312 text files.
     312 unique files.
     22 files ignored.
http://cloc.sourceforge.net v 1.56 T=2.0 s (145.0 files/s, 39132.5 lines/s)
                             files blank
Language
                                                                          code
                                                        comment
Python
                               277
                                           11464
                                                          15379
                                                                         44974
Javascript
                                             902
                                                            821
                                                                         3721
Haskell
                                             123
                                                             72
                                                                          379
HTML
                                              34
                                                             13
                                                                           247
CSS
                                              26
                                                                            72
Bourne Again Shell
                                                                            23
make
                                                                            10
SUM:
                               290
                                           12552
                                                          16287
                                                                         49426
```

Testing

```
yoshikivazquezbaeza:qiime@HEAD$ cloc tests
     122 text files.
     122 unique files.
       4 files ignored.
http://cloc.sourceforge.net v 1.56 T=2.0 s (60.0 files/s, 36310.0 lines/s)
                                             blank
                             files
Language
                                                          comment
                                                                             code
                                120
                                              8305
Python
                                                            31980
                                                                            32335
SUM:
                                              8305
                                120
                                                            31980
                                                                            32335
```

Evolution of QIIME

QIIME Development

Revision & Date

About UNIX

Figure 1.11 Disk operating systems—the compromise between DOS versatility and user expertise in real-time applications.

circa 1992

Taken from, Biomedical Digital Signal Processing, C-Language Examples and Laboratory Experiments for the IBM PC, Willis J. Tompkins Editor p. 18.